

Human Autonomy Integration:

A Collaborative Approach

Jay Shively
Human Systems Integration, Project Engineer
NASA-UAS Integration into the NAS

Outline

- Philosophy of Human-Autonomy Interaction
- Examples from the Workshop
- UAS Design extremes
 - Global Hawk
 - Reaper Ground Control Station
- A Brief Historical Review
 - Fitts
 - Sheridan & Verplank
 - Parasuraman, Sheridan & Wickens
- Dynamic context-driven collaboration

Automation – 2 Options

1) Follow the "Leftover" Principle

- Automate as much as possible
- Automate based on feasibility versus utility
- Design philosophy: automation will be always work as plann
- The human will take care of all 'leftover' tasks

2) Follow the User-Centered Approach

- Enable automation that supports human intent
- Flexible & adjustable automation
- Design for automation transparency &intuitive control
- Design philosophy: Human flexibly employs automation as needed

- Littoral Battleship
- Autonomous car
 - "Solves everything ... bad idea"
- UAS delivery systems
 - "Monitor" hundreds of "autonomous" UAS
- NASA projects
- * Why? Historical, focus but this approach results in a different solution space

How can we replace the information?

- You <u>can't hear</u> the engine rpm fluctuating
- You <u>can't feel</u> vibrations, accelerations or motion
- You <u>can't smell</u> the fuel leak
- You <u>can't taste</u> the electrical fire smoke
- AND, you <u>lose vision</u> in one eye, 30º FOV!
- WELCOME to UAS flying!

Is that a problem?

- Out of the loop phenomenon (Moray, 1986, Wickens, 1992, Endsley, 1995) (Cummings, Murphy, this workshop)
- Inflexible, brittle NOT robust
- Contingency Operations
- Slower reaction to ATC/Alerts

Levels of Automation

Full Mission 1: The Effect of GCS Control Mode Interfaces

- **Objective**: to examine the effects of three different command and control (C2) interfaces on UAS pilots' ability to respond to ATC commands:
- 1. Waypoint-to-Waypoint only (WP; baseline)
- 2. Autopilot (quick input interface)
- 3. Manual (stick and throttle)

Main results/conclusions:

- Waypoint-to-waypoint control mode demonstrated significant deficits in all of the pilot measured response components compared to AP and M
- AP and M had significantly shorter compliance times overall than WP
- These results provide the initial database of expected pilot response time distributions, which will be critical to determining the Minimum Operational Performance Standards for UAS in the NAS
- Acceptability of C2 interfaces depends on the allowable response times given equipment performance specifications (i.e., sensors, aircraft performance, etc.)

Manual Solution: MQ – 9 Ground Control Station

Current UAV Operator Interface Issues

TEAMING!!

Fully Autonomous –

Collaborative ->>>

Fully Manual -

- Task Allocation
- Levels of Automation
- Levels of Processing
- Dynamic Context-Driven Collaboration

Paul Fitts

1912 – 1965, Ohio State University

- Fitt's Law
- Fitt's List (1951)

Humans appear to surpass present-day machines with respect to the following:

- 1. Ability to detect small amounts of visual or acoustic energy
- 2. Ability to perceive patterns of light or sound
- 3. Ability to improvise and use flexible procedures
- 4. Ability to store very large amounts of information for long periods and to recall relevant facts at the appropriate time
- 5. Ability to reason inductively
- 6. Ability to exercise judgment

Present day machines appear to surpass humans with respect to the following:

- 1. Ability to respond quickly to control signals, and to apply great force smoothly and precisely
- 2. Ability to perform repetitive, routine tasks
- 3. Ability to store information briefly and then to erase it completely
- 4. Ability to reason deductively, including computational ability
- 5. Ability to handle complex operations, i.e. to do many different things at once

Tom Sheridan

- Supervisory Control
- Levels of Automation (Sheridan and Verplank, 1978)

Scale of Human-Machine Interaction

- Low 1. Whole task done by human except for actual operation by machine
 - 2. Human asks computer to suggest options and selects from the options
 - 3. Computer suggests options to human
 - 4. Computer suggests options and proposes one of them
 - 5. Computer chooses an action and performs it if human approves
 - 6. Computer chooses an action and performs it unless the human disapproves
- 7. Computer chooses an action, performs it, and informs human
- High 8. Computer does everything autonomously

Parasuraman, Sheridan & Wickens (2000)

Dynamic Context-Driven Collaboration

Defense Science Board – Stop focusing on levels of autonomy – Design Problem

Humans should flexibly and transparently move through levels/modes of automation as needed.

NOT static allocation NOT static levels of automation NOT only by Levels of Processing, but by context

- Optimal level varies not just with tasks, not just with levels of processing but;
 - Mission
 - Driver capabilities/ state & trait
 - Context
 - Degraded operator
 - Rain
 - Snow
 - Dark

A Playbook® Approach to Delegation

A page from Alonzo Stagg's 1927 Playbook

- A means of Delegation
- Plays contain an implicit goal
- Plays define a "template" of plan/behavior alternatives—a "space" of delegated planning authority
 - "pre-compiled" with convenient label
 - Supervisor can further constrain/stipulate as desired—by reference to play structure
 - Monitoring and information reporting facilitated by shared intent structure
 - Dynamic, real time revision and tuning = "calling signals"
- Subordinates responsible for best-effort attempts within play constraints

Multi-level Framework with Extended Playbook & Intermediate Candidate Control Modes (Draper, 2014)

ıvıanuaı:

"hands-onthrottle-andstick" control.

"Noodle":

Pilot's inputs on stick & throttle defines RPA's near future path.

"Hook Left"

<u>Lower</u>

<u>Level</u> <u>Plays</u>:

Pilot's verbal command initiates short, simple maneuver.

Higher Level Plays:

Pilot's verbal commands initiates a planning interaction with automation & then automates execution steps.

Automotive Collaborative Human-Autonomy Teaming

Manual:

Conventional "hands-on-throttle-and-stick" control.

<u>"Nudge"</u>:

Stay a little farther away from that wall

<u>Lower</u> <u>Level</u>

Plays:

Merge, maintain lane, We're third at the four way stop

Higher Level Plays:

Take me home (the fastest, the safest, keep moving)

Unmanned Delivery: Multiple UAS could be at different levels

Manual:

Off-nominal – physically control.

<u>"Nudge"</u>:

Move left 25' before dropping package.

<u>Lower</u>

<u>Level</u>

Plays:

Delivery point changed – re-route.

Higher Level Plays:

Re-route to avoid x,y,z due to high winds.

Summary

- IF we believe that human-centered HAI is advantageous – then fully embrace
- Move away from prescriptive levels of automation (descriptive is OK)
- Build on the foundation of Fitts, Sheridan...
- Human-Autonomy TEAMING architecture is the key

Human role changing

- Away from just supervisory control
- NOT servants to automation overloads
- Collaborative Teammates!